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Uncovering cellular heterogeneity
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~10" cells in the human body, Early efforts to cartography Recent initiatives measure the
with vastly different functions. cell identity relied on microscopy'.  molecular profile of the cell?
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TRamon y Cajal, 1899; 2Regev et al, eLife, 2017 1
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Single-cell omics sequencing

Cell

Open region

Gene expression Chromatin accessibility DNA methylation —_—
Count matrix A

Single-cell sequencing technologies®* deliver quantitative omics information as a count matrix.

3Navvy, Nature methods, 2014; “Preissl et al., Nature Reviews Genetics, 2023 2
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Multimodal omics sequencing
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Gene + Chromatin Gene + Surface
expression accessibility expression proteins
e.g., 10X Multiome® e.g., CITE-seq®

Single-cell multi-omics measure the
cell at several molecular layers.

10X Genomics; ®Stoeckius et al,, Nature methods, 2017; / Chen et al, Cell, 2022
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Gene + Spatial
expression coordinates

e.g., Stereo-seq’

Spatial omics measure the cell
without dissociating the tissue.
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Applications of multimodal omics

® A
CD103+ CD8+ TEM
The joint profiling of gene expression and

surface proteins enabled to identify a new
subpopulation of CD8 TEM cells®.

8Hao et al, Cell, 2021; °Liu et al,, Developmental Cell, 2022

Zebrafish embryos along development

Spatial transcriptomics profiled across
time have allowed to study development
at unprecedented resolution®.
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Paired single-cell multimodal integration
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Joint embeddi
Surface oint embedaing . .
proteins
Joint dimensionality reduction can Trajectory inference, which can discover
discover patterns across modalities trends along a dynamic process such
and identify cell subpopulations'". as development, aging or regeneration™",

0argelaguet et al., Genome biology, 2020; " Lotfollahi et al, bioRxiv, 2022; ™Li et al., Nature biotechnology, 2023; "*Klein et al., bioRxiv, 2023 5



Introduction

Formalizing cells and populations

Unifying notation across this presentation: 1 = Zl a;0x, witha € ¥, andx; € X

ji
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genei
= a0y, witha € ¥, andx; € X
i

We formalize the cell as a histogram
over the space of molecular features,

X, €¢X

® -

= Z a;0x, withae ¥, andx; € X

(2

and populations of cells as a point
cloud over some Euclidean space X.
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Optimal Transport compares distributions

oy I

Eulerian setting: WC (a7 b) Lagrangian setting: WC<M’ 7/)

Optimal Transport™™ is a mathematical framework to compare probability distributions.

" Monge, Mem. Math. Phys. Acad. Royale Sci., 1781; ™ Kantorovich, Doklady Akademii Nauk, 1942 7
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Applications of Optimal Transport in single-cell data

1h 2h 3h Gene Chromatin
expression accessibility Cell Cell2
Trajectory inference for gene expression Matching populations of cells Distance between cells, modeled as
profiled at several time points'". profiled for different modalities'. distributions over molecular features™.

O O O
2016 2019 2022

Start of my PhD

16Hashimoto et al,, ICML, 2016; "/ Schiebinger et al,, Cell, 2019; "8 Demetci et al,, Journal of Comp. Biology, 2022; *®Huizing et al, Bioinformatics, 2022
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Aims of this thesis
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Leverage a cost between features
for joint dimensionality reduction
of single-cell multiomics.
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Leverage spatial information in
trajectory inference with spatial
transcriptomics through time.
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Cell-cell distance
L]
BT
S

1. OT as a cell-cell distance Il Wasserstein Singular Vectors  lll. OT-based joint dimensionality reduction IV. OT-based trajectory inference in space
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Optimal Transport improves cell-cell similarity
inference in single-cell omics data

Work published as: G.-J. Huizing, G. Peyré, L. Cantini, Bioinformatics, 2022

Cell-cell distance

o Jin®
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1. OT as a cell-cell distance  Il. Wasserstein Singular Vectors  1ll. OT-based joint dimensionality reduction  IV. OT-based trajectory inference in space



OT as a cell-cell distance

Distances between cells

Sa

Cell-cell distance
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Distances between cells are crucial for Bin-bin distances like the Euclidean
downstream tasks (e.g., clustering). distance compare genes one by one.

]
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OT as a cell-cell distance
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Optimal Transport distances between cells

Py
F N
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Cell p = Za" Ox, &Gene k Cell v = Z b0y,
k k
Wc(a,b) £ min Z Cry Pey  with U(a,b) £ {P € R™™ P1,,=a,P'1,, =b}
PElU(ab) 4 i - +

Optimal Transport?®?' defines a distance between distributions
as the cost of transporting mass from one to the other.

2OMonge, Mem. Math. Phys. Acad. Royale Sci., 1781; 2'Kantorovich, Doklady Akademii Nauk, 1942 12



Markers for
a cell type

Cr.i
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[ J ®Gene k
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Gene space

Similar features, like markers for the

same cell type, should have a low cost.

24Bellazi et al,, arXiv, 2021; 2 Huizing et al,, ICML, 2022

cene by, [
Cr.i

Gene by

o b b
1—cos(by,b) =1— i,

Here, we consider distances between rows

of the cost matrix, but alternatives exist?2,

13



OT as a cell-cell distance
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Entropic regularization of Optimal Transport

Entropy-regularized Optimal Transport® is a fast approximation of the previous
problem. It can be computed efficiently using the GPU-enabled Sinkhorn algorithm.

Wi(a,b) £ min Cry Pt — eE(P),
c(a.b) Peu(a,b); ka P — EE(P)

where E: P — >, Py (log By — 1)

The Sinkhorn divergence?® elimitates the bias introduced by the entropic regularization.

def.

We(a,b) & Wg(a,b) — L (Wg(a,a) + Wg(b,b)).

22Cuturi, NeurlPS, 2013; 2 Genevay et al,, AISTATS, 2018 14



OT as a cell-cell distance

OT distances better reflect known heterogeneity

Liu Licelllines LiNM LiTumor Liu Leukemia mouse  human
Gene Chromatin DNA
expression accessibility — methylation

We consider several datasets across three
omics annotated with cell types.

15



OT as a cell-cell
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OT distances better reflect known heterogeneity

Silhouette Score

Pearson correlation Optimal Transport
Liu  Licelllines LiNM LiTumor Liu Leukemia mouse  human
Gene Chromatin DNA
expression accessibility — methylation

We consider several datasets across three
omics annotated with cell types.

intra cell-type

distance [ 4
(\.. ° - Q
e ° [ ] L Y
Cell type 1 ® o Cell type 3
[}

0 0
Cell type 2

We compare OT to common bin-bin
distances using the Silhouette score.



OT as a cell-cell distance

OT-based clustering outperforms the standard approach
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We also evaluate clustering performance
using the Adjusted Rand Index.



OT as a cell-cell distance

OT-based clustering outperforms the standard approach
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We also evaluate clustering performance
using the Adjusted Rand Index.

PCA + euclidean Optimal Transport
=z asi
<
Ua cellines  GAM  Uimor Uuledkema  mouse urn
Gene Chromatin DNA
expression accessibility  methylation

We use Leiden clustering based on OT,
and the standard Euclidean distance on PCA.



OT as a cell-cell

Conclusion

Cell-cell distance P]f l
f\AO b ZN
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Optimal Transport as a distance between cells improves clustering performances.

i : ~
o replicate the axpe mons Lm S0 pip install otscomics

’ Open-source Python package




Unsupervised ground metric learning using
Wasserstein Singular Vectors

Work published as: G.-J. Huizing, L. Cantini, G. Peyré, ICML, 2022

Cell-cell distance —
N =N =
" L

1. 0T as a cell-cell distance . Wasserstein Singular Vectors  1ll. OT-based joint dimensionality reduction V. OT-based trajectory inference in space



tein Singular Vectors

Ground metric learning

I In the previous chapter, we computed cell-cell
Optimal Transport distances using a cost C .

In a supervised setting, it is possible to learn
a ground cost that reflects labels?®*?.

o We proposed the first unsupervised ground

. \/ metric learning method.

WC(a,,;,a,,»)

26Cyturi and Avis, JMLR, 2014; 2 Wang and Guibas, ECCV, 2012 20



ein Singular Vectors

Bootstrapping intuition

[_\ Dist: bet feat
b, [ieemsm =
D; ; ZWc(aiaa;j) Cry =Wy (b, by) >CA l
oi b, Eesms—]
Distance between cells .
N T
. \/Dm

The transposed problem defines a Wasserstein distance matrix between genes.

21



Wasserstein Singular Vectors

Let us define a Wasserstein distance map: ‘I)A(C)i,j - We(a;, aj)

The fixed point condition for the previous bootstrapping
algorithm is a nonlinear singular vectors problem:

Distance between cells

|
By (C)=~D, Bg(D)=AC with (\,7) € (R})? (1)

Distance between features

22



Singular Vectors
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Wasserstein Singular Vectors of a block-diagonal matrix

" |
B i

B En, W,

Consider a block Pairs C,D of block constant and antidiagonal

diagonal count matrix. distance matrices are Wasserstein Singular Vectors.

23



tein Singular Vectors
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Computing Wasserstein Singular Vectors

We now add a regularization term to the Wasserstein distance map:

®a(C)iy = We(as,a;) +7lla; —ay]|,

Theorem. When 7 > 0, there exist positive singular vectors (C, D) solving (1).

To compute Wasserstein Singular Vectors, we can use the following power iterations:

w. Pp(Dy) e, Pa(Cii1)

Cri1=——r D1 = .
[P8(Dy)][oo [@a(Cs1)lloo

In practice, power iterations converge even for 7= 0.

24



tein Singular Vectors
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Entropic regularization

Sinkhorn divergence map: ®5(C);; & Wg (a;,a;) + 7] a; —a;||

e—0 = £—00 o0
B, ~ 1 5 = O3
Wasserstein Sinkhorn In the limit case,
Singular Vectors Singular Vectors connection with PCA

In the limit case, Py & (-1 (C(a, —a)),a, — a)))i,
when A is bistochastic, we can explicit some singular vectors.

25



serstein Singular Vectors

lar Vectors for single-cell gene expression

Silhouette score for cells

. \ ™ Method Silhouette
o’ 3 . g \
o b PCA/ (2 0.238
& Pl Kernel PCA / (2 0.241
,_\ g 3 monocytesJ scVI embedding / 2 0.168
B cell markers : Sinkhorn 0.003
Gene Mover Distance 0.066
Bcells” "\
\ 3 WSV (ours) 0.348
UMAP projection of UMAP projection of Silhouette score for marker genes
gene-gene distances Cy, cell-cell distances D;; 2 Gene2Vec/(? WSV (ours)
-0.005 0.0186 0.136

26



stein Singular Vectors

Conclusion

Q

§ T Dy =1Wg(ai,a,) (Gt =1 W0k, 1) |

Bcells TN

Unsupervised ground metric learning framed as a nonlinear singular vector problem.

°
o pip install wsingular

®ryon e & Open-source Python package

27



Paired single-cell multi-omics data integration with

Mowgli

Work published as: G.-J. Huizing, I. M. Deutschmann, G. Peyré, L. Cantini, Nature Comms, 2023

Cell-cell distance

1. 0T as a cell-cell distance  Il. Wasserstein Singular Vectors  Ill. OT-based joint dimensionality reduction  IV. OT-based trajectory inference in space



Joint dimensionality reduction methods

d joint dimensionality reduction

Gene encoder f_g" Gene decoder
g
der Prog I
enco” €in g
protei” SCoder

Deep learning methods®®*? are
expressive but lack interpretability.

Gene program

WRC

Gene
loadings
(Cell embedding

I Joint embedding

Protein
loadings

Matrix factorization methods®***' are
less expressive but interpretable.

28Gong et al,, Genome biology, 2021; °Lotfollahi et al,, bioRxiv, 2022; *°Argelaguet et al., Genome biology, 2020; >’ Chalise and Fridley, PloS one, 2017 28



Overview of our approach

ed joint dimensionality reduction
L Je]

Alrna) F(rna)
Alad)  —  plad) 3 W
Alatac) [ (atac)

cee )

We developed MOwgli, a joint
Nonnegative Matrix Factorization
method with an OT objective.

CD38 I
> CD16
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W D56

Mo s CD11c I
CD8 T cells KLRGT I—

NK cells CDA45RA I
CD172a I—
co11b weight

Erythroid cel

—— >
000 002 004 006 0.08

MAIT T cells
|— H(adt)

[

umaez

The joint embedding allows clustering and
visualization, and omics-specific loadings
enable to interpret results.
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d joint dimensionality reduction

Objective function

Sum over omics

Alrna) F(rma)
. € (p)
I min E ( ZWC@) (H(P)wj, a; ) — ap|E (H(p)> — BEW) )
H(P) W -
p J
Alatao) o) Reconstruction term Regularization terms

Our objective function extends Wasserstein NMF* to the multimodal setting.

32Rolet et al, AISTATS, 2016 30
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RNA %
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Three cell lines

ATAC g
RNA % 3%

Transformation

Purity score

Purity score

Mix groups in RNA Mix groups in both omics Rare population
1.0 1
0.8 1
0.6 1
82% sparse 90% sparse 96% sparse
1.0 1
0.8 1
0.6 1
0 5 10 15 20 0 5 10 15 20 5 10 15 20
Number of nearest neighbors Number of nearest neighbors Number of nearest neighbors
Mowgli MOFA+ [ NMF Seurat Multigrate [ Cobolt
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OT-based joint dimensionality reduction

Competitive embedding and clustering performance in large datasets

PBMC 10X OP Multiome
1.0 1
o
209
A 2
(2 _Bone marrow 5
> \\\ % 084
)
> U
PBMC . 07
. ®
Cell lines OP CITE BM CITE
1.04 1
.. 8 09
Several conditions and z
sequencing platforms < og
0.7 v v . : . v . .
0 5 10 15 20 0 5 10 15 20
Number of nearest neighbors Number of nearest neighbors
Mowgli MOFA+ [ NMF Seurat Multigrate [ Cobolt
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Cell-type specificity of the factors

nsionality reduction

CD8 T cells &
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TEA-seq dataset

RNA ATAC ADT
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OT-based joint dim
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Loadings allow to interpret specific factors

Effector Memory CD8 T Gene set enrichment Motif enrichment ADT weights
s PDTHIGH CD8 TCELL down *coues KLRG1
Al D1 % i\H down TBX18 CD8a
NAIVE v ORY CD8 TCELL down *TBX21 03
D8+ Effector Memory T3 TBX3
CD8+ Effector Memory T * TBX20 £S5
" *TBX1 TCRa/b
NAIVE vs CD8 TCELL down 182
NKT CELL vs ALPHAALPHA CD8 TCELL down *TBX4 CD45RO
0 10 20 30 40 o 5 10 0.00 0.05 0.10 0.15

—logio p —logio p

. (rna) ) (atac) ) (adt) )
factor 49 a a a
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OT-based joint dim nality reduction

Conclusion

w .
F(rna) (} KLRG1
CD8a
¥ 3 CD3
H@d) X W A/W

c095
4 TCR-a/b Fy(adt)
e y |, dPeE CDASRO
o |—”m, 0.2)0 0.'05 04'10 0.'15

o
pip install mowgli

& Open-source Python package
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Learning cell fate landscapes from spatial
transcriptomics using Fused Gromov-Wasserstein

Preprint: G.-). Huizing, G. Peyreé, L. Cantini, bioRxiv, 2024

Cell-cell distance —

I. OT as a cell-cell distance Il Wasserstein Singular Vectors  lll. OT-based joint dimensionality reduct: OT-based trajectory inference in spage

Lagrangian setting



Spatial transcriptomics through time

Recent datasets have profiled spatial transcriptomics at several timepoints333+%,

3Liu et al,, Developmental Cell, 2022; 3*Chen et al,, Cell, 2022; >>Wei et al,, Science, 2022 36



Potential landscapes
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Potential J : R? — R

il

Recent trajectory inference methods®®*"38
model cellular differentiation as the
minimization of a potential energy.

OT-based trajectory inference
O@00000

M = Ziai&‘i

s
Prediction (Id — 7VJ) 41y

pushforward measure

3%Hashimoto et al, ICML, 2016; ¥ Yeo et al, Nature communications, 2021; *8Bunne et al, AISTATS, 2022
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OT-based trajectory inference
00e0000

Learning cell fate landscapes using time course data

) £.(0)

Loss at t

Prediction (Id — 7V.Jp) 4 1 Potential Jy = MLP

They learn a potential .Jy by comparing the model's predictions
to the true distribution using Optimal Transport33041,

39Hashimoto et al, ICML, 2016; “°Yeo et al,, Nature communications, 2021; “'Bunne et al, AISTATS, 2022 38



based trajectory inference
(e]

Sinkhorn loss

Ground truth ftir = Ziai(;xi Prediction 14, = (Id — 7VJ) 214

We ) E min ; P; . — cE(P
C(,Ll‘t+7' W /) PE(a,h) %:C(Xza ) ,J € ( )
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tory inference

The Sinkhorn loss is not spatially coherent

We
X e

Optic / —
vesicle / / \ / lm \
/ 1
Polster ( { / B\ / /
N / -
N o
(Id — TVr,]())#/l,f Mt

But the Sinkhorn loss matches regions that are not coherent in space.
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Fused Gromov-Wasserstein loss

OT-based trajectory inference
O0000e0

We propose using Fused Gromov-Wasserstein® to leverage space.

FGWS (11,1,) =

min (1 — a)L(P)+ a Q(P) — cE(P)

PcU(a,b)

> e(xi,y) Py

i

Linear term L(P)
on gene expression

N2
E | cxx(Xi,Xir) — ey (v, %) | P g Py
0.5
Quadratic term Q(P)
on spatial coordinates

“2vayer et al, arXiv, 2018

e (Xi, Xyr) X;
r\.
xiv. P
eJi
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OT-based trajectory inference
O00000e

Introducing spatial information with Fused Gromov-Wasserstein

FGW,
S o
, RN
Optic // — &
vesicle /
( / ) | § )
Polster \ '/ h W\
\_ A —
N
— S
(Id — Tvt]())#/,lt Ht+T

Fused Gromov-Wasserstein leads to improved spatial coherence.
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OT-based trajectory inference
000

Benchmarking datasets: zebrafish, axolotl, and mouse

Early test set Late test set Early test set Late test set Early test set Late test set
Train set
Train set Train set
Zebrafish Mouse Axolotl
We consider three datasets**44%; We split the data into a train set,
zebrafish, mouse, and axolotl. early test set, and late test set.

“Liu et al,, Developmental Cell, 2022; ““Chen et al, Cell, 2022; “>Wei et al., Science, 2022 43



OT-based trajectory inference
000

Evaluation metrics

FGW,,
A We evaluate predictions on the test set based on two metrics
FGWE (tt-r,Ve7) = min (1 — a)|L(P)+ o Q(P)— cE(P)
PclU(a,b)
Virr = (1d = 7V )t Mtsr Gene expression  Spatial coherence
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OT-based traject nference
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Results on early time points

Axolotl early test set Zebrafish early test set Mouse early test set

00256
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Results on late time points

Axolotl late test set Zebrafish late test set Mouse late test set
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OT-based trajectory inference

Improved spatial coherence in the matchings
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Learning a potential of axolotl neuron regeneration

OT-based trajectory inference

potent®
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We computed a potential landscape of
neuron regeneration in axolotls*.

“6\ei et al, Science, 2022

Gradients of this potential confirm a
transition from EGCs to mature neurons.
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Analyzing the dynamics of neuron regeneration

Neuron regeneration

- -, ® nptxEX

g
3
nsg2 e S &
2 =)
s s
5 2 5
e £
§ NKX2-5
% ® reakEGC
3 00 05 1.0 15 20 25 3.0 35
Cells ranked by potential Potential .Jy —logio (p)
We identify potential driver genes by regressing Transcription Factors targeting these
their expression based on the potential. genes represent candidate regulators.
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Conclusion

\ ® nptxEX
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1,
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Il Il Il Il Il 3 \
2 Sai lod s 204 ! Potential

Trajectory inference for spatial transcriptomics profiled through time using FGW.

cantinilab/stories  Pubiic 2 °
ng ce dscapes fram spatial franscriptomics using Fused pip install stories-jax

& Open-source Python package
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Contributions

14 ha Y o% &8¢,

Linear OT Joint dim. reduction Quadratic OT Trajectory inference
Between cells Multiomics Between populations Spatial omics
Cell-cell distance =
1. OT as a cell-cell distance  Wl. Wasserstein Singular Vectors Ill. OT-based joint dimensionality reduction IV. OT-based trajectory inference in space

"Huizing et al, Bioinformatics, 2022; "'Huizing et al,, ICML, 2022; ""Huizing et al, Nat. Comm., 2023; 'V Huizing et al,, bioRxiv, 2024 51



Conclusion
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Perspectives: OT computation at the scale of single-cell atlases

Graph diffusion-based”

# g Tree-based*®

The increased availability of large multimodal
atlases motivates fast approximations of OT.

Neural network-based*°

“/Tong et al,, ICASSP, 2022; “®Diisterwald et al., ICML GRaM Workshop, 2024; *°Courty et al,, ICLR, 2018; *°Haviv et al,, ICML, 2024 52



Conclusion
0@00

Perspectives: Methodological improvements for further biological insights

Nonlinear joint dimensionality reduction®.

Finding rare cell types and complex
cellular dynamics motivates further ~_ 7 +
methodological improvements.

More general class of differentiation potentials®>®.

STschmitz et al,, SIAM Journal on Imaging Sciences, 2018; Weinreb et al., PNAS, 2018; ®3Terpin et al., arXiv, 2024 53



Conclusion
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Perspectives: Unified OT framework for multimodal omics data

/,L[ljl:m]. M ° :
! Ut

Hierarchical OT framework Ground metric learning from partial
for population dynamics™. pairings in time-course data®~°.

S“yurochkin et al,, NeurlPS, 2019; **Dupuy and Galichon, Journal of Political Economy, 2014; *®Chen et la., Nature, 2022 54
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